大阪大学大学院基礎工学研究科/量子情報・量子生命研究センターの箱嶋秀昭 助教、NTTコンピュータ&データサイエンス研究所の遠藤傑 准特別研究員、山本薫 研究員、中央大学の松崎雄一郎 准教授、東京大学大学院工学系研究科の吉岡信行 助教から、量子コンピュータにおけるシミュレーション性能を劇的に向上させる新しいアプローチが発表された。
 この方法は、局所性(※)と呼ばれる物理学の基本的な概念を量子シミュレーションの実用化に応用したものであり、未来の量子技術の実現を大きく前進させるものと期待される。
※ 局所性:ある地点で起きた出来事により、遠くの実験結果が直ちに変わることはない、という性質のこと。

研究の概要
自然界の複雑な量子現象を解明するために、量子シミュレーションは重要な役割を果たす。しかし、現行の量子シミュレーションデバイスは、冷却温度の限界や環境からのノイズといった多くの実験的制約に直面している。
先行研究において、量子状態間にもつれ測定を実行し、実験的な限界を超える結果が得られる、蒸留と呼ばれる手法が提案されたが、系のサイズが大きくなるにつれて測定回数が指数関数的に増大してしまうという問題を抱えていた。
 今回、研究グループは、着目する局所領域にのみ蒸留する「局所仮想純化法」という手法を提案。クラスター性と呼ばれる、物理学における基本的な性質が成立するという条件のもとで、測定回数の問題が解決することを理論的に証明した。
 本提案手法は、量子シミュレーション性能を劇的に向上させるとともに、量子シミュレーションの実用化への重要な一歩となるものと期待される。
 本研究は、2024年8月22日(米国東部夏時間)に米国科学雑誌『Physical Review Letters』のオンライン版に掲載された。

研究の背景
量子力学は自然現象を記述する最も基本的な理論であり、現代物理学の基盤としての役割だけでなく、半導体デバイス設計のような現代エレクトロニクスの基礎としても重要な役割を担っている。
 量子力学に従う複雑な現象は、従来のコンピュータではシミュレーションが困難であると知られており、複雑な現象を理解し制御することのボトルネックになっている。
 そのような自然現象を効率的に調べるために有効な手段と考えられているのが、量子力学に従って動作するデバイスの活用、すなわち量子シミュレーションだ。量子シミュレーションは、リチャード・P・ファインマン(※5)による量子コンピュータの提案の起源であるだけでなく、現在の量子情報科学において中心的なトピックであり、物性物理学、統計物理学、量子化学、高エネルギー物理学など、複雑な量子力学的現象が現れる多くの分野への応用が期待されている。
※5 米国の理論物理学者(1918~1988年)。量子電磁力学の発展に大きく貢献した業績により、シュウィンガー・朝永振一郎とともに、1965年にノーベル物理学賞を受賞。
例えば、熱平衡状態・非平衡ダイナミクス(※6)のシミュレーションにおいては、量子力学的な効果が大きく現れる場合、従来のコンピュータでは非常に困難と考えられており、量子シミュレーションの応用が威力を発揮すると注目されている。
※6 熱平衡状態・非平衡ダイナミクス:熱平衡状態とは巨視的に見て変化しない状態のこと。非平衡ダイナミクスとは、量子力学の基本原理であるシュレディンガー方程式に従った系の時間発展のこと。どちらも従来のコンピュータでシミュレーションするのは一般に難しいと考えられている。
 しかし、これまでの量子デバイスには、実験的な制約があるためすべてのタスクを量子デバイス上で行なうことが難しいという問題があった。
 実験的な制約とは、たとえば冷却温度の限界や環境からのノイズの影響のことを指す。この問題に対処するために、もつれ測定を利用した、量子状態の純度(※7)を仮想的に高める方法である仮想冷却法・仮想蒸留法(※8)が先行研究で提案された。
※7 量子状態の純度:量子状態がどれだけ純粋状態に近いのかを示す指標のこと。量子状態は純粋状態・混合状態の二つがある。純粋状態とは、一つの状態ベクトル(波動関数)だけで表されるような状態のこと。これに対し、複数の純粋状態がある確率で混ざっている状態のことを混合状態と呼ぶ。
※8 仮想冷却法・仮想蒸留法:もつれ測定を用いた、状態の冷却・ノイズ緩和の手法のこと。
 しかし、扱う問題のサイズが大きくなるにつれて測定回数が指数関数的に増大し、量子シミュレーションが威力を発揮するはずの大規模なサイズの問題に対処できなくなってしまうという困難を抱えていた。

研究の内容
本研究グループは、局所性という物理学の基本概念を考察し、量子シミュレーションに必要なもつれ測定を全域ではなく、着目する局所領域に限定する新しい手法「局所仮想純化法」を提案した(アイコン)。
熱平衡状態のように自然界にて普遍的に実現される状態では、局所性に密接に関連した概念である「クラスター性」と呼ばれる性質が広く成り立つと信じられている。
 クラスター性とは、遠く離れた2地点間での実験結果は相関を持たない、という性質のこと。量子シミュレーションにより生成される状態がこのような性質を持っていれば、遠く離れた地点において蒸留により純度を高める操作は、出力結果に何の影響も及ぼさないことになる。
 言い換えると、着目する領域から遠く離れた地点の純度を高める操作は不要であり、全域的ではなく局所的にのみ蒸留することで、従来の測定回数の指数関数的な増大の問題を解決できると期待できる。
 今回の研究では、上記の期待が現実となるような理論的な条件を明らかにした。
 具体的には、冷却やノイズ緩和タスクに局所仮想純粋化法が適用できるための条件、つまり局所的に制限された蒸留操作が数学的に正当化される条件を示した。

■本研究成果が社会に与える影響(本研究成果の意義)
本研究により、現実的な測定回数で量子シミュレーションの実験的な限界を破ることが可能になった。
 これは量子シミュレーションの実用化に向けた重要な一歩であり、幅広い科学分野での応用が期待される。
 今後の方向性として、トポロジカル秩序の検出や量子カオス性を特徴付ける量の測定など、冷却とノイズ緩和以外への応用が考えられる。これらの量は先行研究において、もつれ測定を用いて検出する手法が提案されているため、本提案手法が適用可能なものと考えられる。
 本提案手法によって量子優位性が達成できれば、量子シミュレーションによって未解明の量子多体現象の理解が進み、幅広い分野に貢献できるはずだ。

関連情報
https://group.ntt/jp/newsrelease/2024/08/23/240823a.html

©2024 CYBER.NE.JPfrom STAD

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account